Inteligencia artificial y pensamiento crítico
A medida que la #IA generativa continúa integrándose en nuestros sistemas educativos, surge una pregunta pertinente: ¿Está la IA erosionando nuestro pensamiento crítico? La respuesta, sin embargo, requiere una exploración más profunda de nuestras raíces educativas y culturales.
Históricamente, el pensamiento crítico ha sido un objetivo primordial de la educación, para promover la habilidad de analizar hechos, generar conexiones y evaluar argumentos de manera lógica. Sin embargo, la preocupación por su deterioro precede con creces a la aparición de la IA generativa. Este declive, argumentado por algunos educadores y pensadores, se atribuye más a cambios en los paradigmas educativos, la sobrevaloración de la memorización y la subvaloración del análisis crítico y la reflexión profunda.
La llegada de la IA generativa no ha iniciado este desafío, sino que lo ha iluminado, actuando como un espejo de nuestras prácticas educativas actuales. Lejos de ser el villano, la #IA ofrece oportunidades sin precedentes para revitalizar el pensamiento crítico. Herramientas basadas en esta tecnología pueden proporcionar escenarios complejos y datos para análisis, fomentar la discusión crítica y ofrecer simulaciones que desafíen nuestras habilidades de razonamiento y argumentación.
La clave está, como siempre, en cómo integramos la tecnología en la educación. En lugar de depender de ella para respuestas rápidas y soluciones fáciles, podemos utilizarla para crear entornos de aprendizaje que promuevan la curiosidad, la indagación y el debate crítico. La IA puede ser una aliada en enseñar a los estudiantes no solo a encontrar respuestas, sino a hacer las preguntas correctas.
Cómo funciona la inteligencia artificial generativa: una mirada profunda
La Inteligencia Artificial Generativa (IA generativa) representa un paradigma avanzado en la ciencia de la computación y la inteligencia artificial (IA), donde los sistemas son diseñados para generar nuevos contenidos, tales como texto, imágenes, música, e incluso códigos de programación, que no existían previamente. Esta capacidad de creación autónoma coloca a la IA generativa en la vanguardia de la innovación tecnológica.
Principios Operativos de la IA Generativa
El núcleo de la IA generativa reside en su capacidad para aplicar técnicas avanzadas de aprendizaje automático (ML), específicamente el aprendizaje profundo (deep learning). Estos sistemas se basan en redes neuronales artificiales, estructuradas en múltiples capas, que emulan la manera en que el cerebro humano procesa la información. Los dos enfoques más destacados son:
- Redes Generativas Antagónicas (GANs): Compuestas por dos redes neuronales en competencia, una generadora y otra discriminadora. La generadora crea contenidos nuevos, mientras que la discriminadora evalúa su autenticidad. Este proceso iterativo refina continuamente los resultados hasta lograr salidas casi indistinguibles de las creaciones humanas.
- Modelos de Transformadores de Atención: Utilizados principalmente en la generación de texto, estos modelos, como GPT (Generative Pre-trained Transformer), analizan vastas cantidades de texto y aprenden a predecir la secuencia más probable de palabras, permitiendo generar texto coherente y contextualmente relevante.
Aplicaciones Avanzadas de la IA Generativa
- ChatGPT y Aplicaciones de Procesamiento del Lenguaje Natural (NLP): Estos sistemas no solo generan texto coherente, sino que también comprenden y responden a consultas complejas, realizan resúmenes y traducciones, y crean contenido creativo y técnico.
- DALL-E y Stable Diffusion en la Generación de Imágenes: Estos modelos transforman descripciones textuales en imágenes visualmente ricas y detalladas, abriendo nuevas fronteras en el arte digital, el diseño gráfico y la animación.
- Industria Farmacéutica: La IA generativa acelera el descubrimiento de fármacos mediante la síntesis y optimización de secuencias de proteínas, reduciendo significativamente los tiempos y costos asociados con la investigación y el desarrollo farmacéutico.
- Creación de Contenido Escrito: La generación automática de noticias, informes, reseñas y contenidos publicitarios está revolucionando el campo del periodismo y el marketing digital.
Impacto y Futuro de la IA Generativa
La relevancia de la IA generativa se extiende más allá de sus aplicaciones prácticas; está redefiniendo la interacción entre la tecnología y la creatividad humana. Su capacidad para automatizar y mejorar procesos creativos promete transformar industrias enteras, desde el entretenimiento hasta la atención médica.
Conclusión
La IA generativa no es solo una herramienta tecnológica avanzada; es un catalizador de innovación y creatividad. A medida que continuamos explorando sus capacidades y aplicaciones, es probable que desempeñe un papel cada vez más crítico en la solución de algunos de los desafíos más complejos de nuestra era.
Esperamos que este análisis haya proporcionado una comprensión más profunda y técnica de la IA generativa. Para cualquier consulta o comentario adicional, su participación es bienvenida. ¡Continuemos explorando juntos el futuro de la IA!
Referencias:
- ComputerWorld – Análisis técnico de la IA generativa.
- AWS – Exploración en profundidad de las aplicaciones y funcionamiento de la IA generativa.
- Oracle España – Discusión sobre los fundamentos y el impacto de la IA generativa.
Desafíos éticos y de seguridad en la era de la inteligencia artificial generativa en salud
En un mundo donde la tecnología evoluciona a un ritmo vertiginoso, la inteligencia artificial (IA) generativa está marcando un nuevo capítulo en la sanidad. Con capacidades que van desde la generación de datos sintéticos hasta la creación de modelos predictivos, la IA generativa tiene el potencial de revolucionar la atención sanitaria. Sin embargo, este avance no está exento de desafíos éticos y de seguridad. En este artículo, exploramos estos retos y cómo pueden abordarse para asegurar una implementación segura y ética de la IA generativa en los sistemas de salud.
La IA generativa, especialmente aquellas basadas en modelos como GANs (Redes Generativas Antagónicas) y modelos de lenguaje avanzados, están transformando la investigación médica y la práctica clínica. Estos sistemas pueden generar datos de pacientes sintéticos, lo que mejora la investigación sin comprometer la privacidad de los pacientes. Además, están siendo utilizados para el desarrollo de fármacos personalizados y en la elaboración de diagnósticos más precisos.
Desafíos éticos:
- Privacidad y Confidencialidad: aunque la IA generativa puede generar datos sintéticos, la línea entre datos reales y sintéticos puede ser borrosa. Esto plantea preguntas sobre la privacidad y la confidencialidad de los datos de los pacientes.
- Consentimiento Informado: en la era de la IA, obtener consentimiento informado para el uso de datos de pacientes se vuelve más complejo. ¿Cómo se asegura que los pacientes comprendan el uso potencial de sus datos en modelos generativos?
- Sesgos en los Datos: los modelos generativos son tan buenos como los datos con los que se entrenan. Los sesgos en estos datos pueden llevar a conclusiones erróneas o a prácticas médicas ineficaces.
Desafíos de seguridad:
- Integridad de los Datos: asegurar que los datos generados por IA no sean manipulados es crucial, especialmente cuando estos datos podrían influir en decisiones clínicas.
- Ataques Adversarios: los sistemas de IA son susceptibles a ataques que pueden hacer que generen datos falsos o perjudiciales.
- Dependencia de Sistemas Automatizados: una excesiva dependencia de la IA en la toma de decisiones médicas puede llevar a errores no detectados y a una pérdida de habilidades clínicas críticas.
Para enfrentar estos desafíos, es esencial desarrollar un marco ético robusto y normativas de seguridad específicas para la IA en sanidad. La colaboración entre desarrolladores de IA, profesionales sanitarios, pacientes y reguladores es clave para establecer estándares y prácticas que salvaguarden la integridad y la eficacia de los sistemas de salud.
Is resistance to AI futile?
The phrase «resistance to AI is futile» is often used in a playful or humorous context, drawing a reference to the famous line «Resistance is futile» from the science fiction series «Star Trek,» spoken by the Borg, a technologically advanced and assimilating civilization. However, in the context of AI, it is essential to clarify that resistance to AI is not futile, nor is it necessarily undesirable.
AI, as a transformative technology, is rapidly advancing and integrating into various aspects of our lives, from everyday applications to complex industries. There are both proponents and skeptics of AI, and discussions around its impact on society, ethics, and employment are ongoing.
Some reasons why people might consider resistance to AI difficult include:
- Pervasive Integration: AI is already integrated into numerous technologies and services. Its application is becoming increasingly widespread and deeply embedded in many industries, making it challenging to avoid its presence.
- Technological Advancement: AI technologies continue to evolve and improve, enhancing their capabilities and potential benefits in various fields.
- Economic and Industrial Advantages: AI adoption can provide significant advantages in productivity, efficiency, and innovation for businesses and industries.
- Automation and Labor Displacement: AI has the potential to automate certain tasks, leading to concerns about job displacement in certain sectors.
- Policy and Regulation Challenges: Formulating appropriate policies and regulations to govern AI’s ethical use and potential risks is complex and requires careful consideration.
However, it is essential to acknowledge that resistance, skepticism, and critical evaluation are vital elements of technological progress. Responsible development and deployment of AI require addressing potential challenges and ensuring that the technology benefits society as a whole.
As with any transformative technology, embracing AI should be a thoughtful and well-informed process, considering its implications on privacy, security, ethics, and equitable distribution of benefits. Encouraging open discussions, ethical considerations, and collaboration among stakeholders can help shape AI’s future in a manner that aligns with societal values and aspirations. Thus, while resistance might face challenges, active participation and critical engagement remain important aspects of AI’s integration into our lives.
How are generative artificial intelligence models different?
The same prompt, three different responses from three different Large Languages Models (LLM) that are easily available: ChatGPT, BingGPT and Bard.
Human large language models
Prompt: How are ChatGPT, BingGPT and Bard different?
ChatGPT
ChatGPT, BingGPT, and Bard are three distinct language models developed by OpenAI, and GooogleAI, each with its own characteristics and intended applications. Here are the key differences between them:
- Purpose and training data:
- ChatGPT: ChatGPT is designed to engage in conversation with users and provide useful responses across a wide range of topics. It has been trained on a mixture of licensed data, data created by human trainers, and publicly available text from the internet.
- BingGPT: BingGPT is a language model developed specifically to assist with search-related tasks. It has been trained using a diverse range of internet text, including web pages, search queries, and search result pages.
- Bard: Bard is a language model trained to generate poetic text. It focuses on mimicking different poetic styles, structures, and themes. It has been trained on a curated dataset of high-quality poetry from diverse sources.
- Output style and focus:
- ChatGPT: ChatGPT aims to provide informative and practical responses in a conversational manner. It is designed to generate text that is helpful, engaging, and contextually relevant.
- BingGPT: BingGPT is tailored for search-related tasks and is intended to generate responses that assist users in finding information or performing specific search-related functions.
- Bard: Bard is specifically trained to generate poetic text, with a focus on creating expressive, aesthetic, and emotionally evocative poetry.
- Use cases:
- ChatGPT: ChatGPT can be used in various applications involving interactive dialogue, such as chatbots, virtual assistants, and customer support systems. It is suitable for providing conversational responses to user queries.
- BingGPT: BingGPT is primarily designed to enhance search experiences by providing more accurate and contextually relevant search results, assisting with search queries, or generating snippets for search results.
- Bard: Bard can be used in applications related to creative writing, poetry generation, and artistic expression. It can assist poets, writers, and artists in generating poetic text or serve as a source of inspiration.
These models have different focuses and are trained on different datasets, enabling them to serve distinct purposes. It’s important to consider these differences when choosing the most appropriate model for a specific use case or application.
BingGPT
ChatGPT, BingGPT and Bard are three different models of natural language generation (NLG) that have been developed by OpenAI, Microsoft Research and GoogleAI, respectively. NLG is the task of generating natural language text from some input, such as keywords, images, or structured data. Each of these models has its own strengths and limitations, and they are designed for different purposes and scenarios.
ChatGPT is a model that specializes in conversational text generation. It can generate realistic and engaging dialogues between two or more agents, such as humans or chatbots. ChatGPT is based on the GPT-3 architecture, which uses a large-scale neural network to learn from a massive corpus of text data. ChatGPT can handle various topics, languages, and styles of conversation, and it can also generate creative content such as jokes, stories, or poems.
BingGPT is a model that focuses on web search and information retrieval. It can generate relevant and informative responses to user queries, such as facts, summaries, definitions, or suggestions. BingGPT is also based on the GPT-3 architecture, but it has been fine-tuned on a large collection of web documents and search results. BingGPT can leverage the rich information available on the web to provide comprehensive and accurate answers to user questions.
Bard is a model that excels in generating artistic and literary text. It can generate original and diverse content such as lyrics, essays, speeches, or novels. Bard is based on the Transformer-XL architecture, which uses a recurrent neural network to capture long-term dependencies and coherence in text. Bard can learn from various sources of text data, such as books, articles, or social media posts, and it can generate text with different genres, themes, and emotions.
Bard
ChatGPT, BingGPT, and Bard are all large language models (LLMs) that have been trained on massive datasets of text and code. They can all generate text, translate languages, write different kinds of creative content, and answer your questions in an informative way. However, there are some key differences between the three models.
ChatGPT is a model generative pre-trained transformer developed by OpenAI. It is trained on a dataset of text and code that includes a lot of conversation data. This means that ChatGPT is very good at generating text that is conversational and engaging. However, ChatGPT can also be sessed and can generate text that is offensive or harmful.
BingGPT is a model that is based on the same GPT-4 technology as ChatGPT, but it has been trained on a dataset that includes more information about the real world. This means that BingGPT is more likely to generate text that is factual and accurate. However, BingGPT is not as good at generating text that is creative or engaging as ChatGPT.
Bard is a model that is based on Google’s own LaMDA language model. LaMDA is a factual language model that has been trained on a massive dataset of text and code. This means that Bard is very good at generating text that is factual and accurate. However, Bard is also good at generating text that is creative and engaging. Additionally, Bard has access to the information of the world real through Google Search, which allows it to provide more comprehensive and informative answers to your questions.
In general, Bard is a more comprehensive and informative model than ChatGPT or BingGPT. It is less likely to generate text that is offensive or harmful, and it has access to the information of the world real through Google Search. However, ChatGPT is better at generating text that is conversational and engaging, while BingGPT is more likely to generate text that is factual and accurate.
Here is a table that summarizes the key differences between ChatGPT, BingGPT, and Bard:
Feature | ChatGPT | BingGPT | Bard |
---|---|---|---|
Developer | OpenAI | Microsoft | Google AI |
Model | GPT-3.5 | GPT-4 | LaMDA |
Data | Text and code | Text and code | Text and code, as well as information of the world real through Google Search |
Strengths | Conversational, engaging | Factual, accurate | Comprehensive, informative |
Weaknesses | Can be sessed | Not as good at generating creative or engaging text | Not as good at generating factual or accurate text |
Ultimately, the best model for you will depend on your specific needs. If you need a model that is good at generating conversational and engaging text, then ChatGPT is a good option. If you need a model that is good at generating factual and accurate text, then BingGPT is a good alternative. And if you need a model that is comprehensive and informative, then Bard is the best option for you.
¿Quién mató a Hildegart Rodríguez Carballeira y por qué?
Yo tengo mi propio análisis. Se remonta a mi trabajo para la clase de filosofía de 3º de BUP. Pero ahora GPT4 me dice lo siguiente:
Hildegart Rodríguez Carballeira fue una niña prodigio, una activista feminista y una defensora de la eugenesia y el amor libre en la España de los años 20 y 30. Nacida en 1914, fue educada por su madre, Aurora Rodríguez Carballeira, una mujer obsesionada con crear un ser humano perfecto.
Aurora sometió a su hija a un riguroso plan de estudios que la convirtió en una políglota, una escritora, una abogada y una líder política. Hildegart llegó a ser reconocida internacionalmente como una de las mentes más brillantes de su época, y recibió el apoyo de personalidades como H.G. Wells, Marie Curie o Clara Campoamor.
Sin embargo, la relación entre madre e hija se deterioró cuando Hildegart empezó a tener una vida propia, alejada del control de Aurora. Hildegart se enamoró de un periodista, se afilió al Partido Socialista Obrero Español y se opuso a los planes de su madre de esterilizarla. Aurora, celosa y furiosa, vio en su hija una traición a su proyecto eugenésico y decidió acabar con su vida.
El 9 de junio de 1933, mientras Hildegart dormía, Aurora le disparó cuatro veces en la cabeza con una pistola que le había regalado el escritor Ramón Gómez de la Serna. Después, llamó a la policía y confesó el crimen.
Aurora fue juzgada por parricidio y declarada demente. Fue internada en un manicomio, donde murió en 1955. Hildegart fue enterrada en el cementerio civil de Madrid, donde su tumba lleva la inscripción: «Hildegart Rodríguez Carballeira, mártir del pensamiento libre».
¿Se puede ser creativo utilizando Large Language Models?
La contestación de ChatGPT a mi prompt:
¡Absolutamente! Los modelos de lenguaje grandes, como ChatGPT, pueden ser herramientas muy útiles para fomentar la creatividad. Estos modelos están diseñados para comprender y generar texto coherente en diferentes contextos y estilos, lo que los convierte en una fuente de inspiración para la creatividad.
Aquí hay algunas formas en las que los large language models pueden ayudar a potenciar la creatividad:
- Generación de ideas: Puedes utilizar el modelo para generar una lista de ideas sobre cualquier tema. Por ejemplo, si estás buscando inspiración para escribir una historia, puedes hacer preguntas o darle una frase de inicio al modelo, y te ofrecerá diferentes posibilidades y perspectivas que pueden estimular tu creatividad.
- Expansión de conceptos: Si tienes una idea inicial pero necesitas desarrollarla más, puedes utilizar el modelo para explorar diferentes enfoques y detalles. Puedes hacer preguntas al modelo, pedirle que describa escenas o personajes, o incluso que te ayude a crear diálogos realistas.
- Generación de contenido creativo: Los large language models pueden generar texto creativo por sí mismos. Por ejemplo, puedes pedirle al modelo que escriba un poema, una canción o un cuento breve basado en ciertos criterios o temas. Aunque el modelo no tenga experiencia personal ni emociones, puede ofrecerte opciones y estructuras interesantes para inspirarte.
- Asistente de escritura: Si estás trabajando en un proyecto de escritura, puedes utilizar el modelo como un asistente para recibir sugerencias, corregir gramática o explorar diferentes estilos de escritura. Esto puede ayudarte a superar bloqueos creativos y descubrir nuevas formas de abordar tu trabajo.
Es importante destacar que, aunque los large language models pueden ser herramientas valiosas para estimular la creatividad, es esencial que también confíes en tu propio juicio y conocimiento. Los modelos de lenguaje no sustituyen la originalidad y la perspectiva humana, sino que pueden servir como una fuente adicional de inspiración y apoyo.
Inteligencia artificial: miedo, envidia y fantasía
El miedo, la envidia y la fantasia son tres palancas clave para el progreso de nuestra especie desde la revolución cognitiva ocurrida hace unos 70 mil años. Con miedo, envidia y fantasía nuestra especie no sólo consiguió expandir el alcance de sus genes más allá de otras muchas especies, sino que impusimos nuestros memes y temes para aumentar nuestra eficiencia.
Ahora estamos asistiendo a una revolución del mismo calibre que la que ocurrió en Africa. Pero nos cuesta identificarla porque estamos demasiado próximos a los árboles.
En cualquier caso, el miedo, la envidia y la fantasía continúan siendo los tres argumentos usados a favor y en contra de la IA.
Y esto es lo que responde #ChatGPT cuando le pregunto «¿Por qué tienen miedo los humanos a la inteligencia artificial?
El miedo humano hacia la inteligencia artificial (IA) puede atribuirse a varias razones:
– Temor a lo desconocido: La IA es un campo en constante evolución y desarrollo, y gran parte de su potencial aún no se ha explorado por completo. – – La falta de comprensión sobre cómo funciona exactamente la IA y cómo podría impactar diversas áreas de la vida puede generar temor e incertidumbre.
– Representación en medios y cultura popular: En películas, libros y otros medios de entretenimiento, a menudo se presenta a la IA como una fuerza descontrolada y amenazante que puede superar a la humanidad. Estas representaciones exageradas pueden influir en la percepción pública y generar miedo hacia la IA.
– Pérdida de control: Existe el temor de que la IA pueda superar o reemplazar a los seres humanos en diversas tareas y roles, lo que lleva a preocupaciones sobre la pérdida de empleos y la falta de autonomía humana. La idea de depender demasiado de las máquinas y perder el control sobre nuestras propias vidas puede generar ansiedad.
– Ética y responsabilidad: A medida que la IA se vuelve más sofisticada, surgen preguntas éticas y morales sobre su uso y sus implicaciones. El temor radica en la posibilidad de que la IA pueda tomar decisiones que no sean éticas o actuar de manera perjudicial para la humanidad si no se establecen salvaguardias adecuadas.
– Riesgo existencial: Algunas personas temen que la IA pueda desarrollarse hasta el punto de superar la inteligencia humana y representar un riesgo existencial para la humanidad. La preocupación se centra en escenarios hipotéticos en los que la IA pueda volverse demasiado poderosa o descontrolada, lo que podría amenazar la supervivencia de nuestra especie.
Es importante tener en cuenta que el miedo hacia la IA no es universal y que también existen perspectivas optimistas sobre su potencial para mejorar la vida humana. La comprensión, el diálogo y la colaboración entre expertos en IA, ética, legisladores y la sociedad en general son fundamentales para abordar los temores legítimos y garantizar que la IA se desarrolle y utilice de manera responsable y beneficiosa para la humanidad.
Surgery and LLMs
Large language models have recently emerged as powerful AI technology with many potential applications. Surgical practice might benefit from its use. Therefore, I decided to investigate what two widely available chatbots, ChatGPT and BingGPT, based on GPT3.5 and GPT4 respectively, had to say.
My prompt to ChatGPT was: Why and how can LLM be used in surgical practice?
Its response:
Large Language Models (LLMs), such as GPT-3 and GPT-4, can be used in surgical practice in a variety of ways to support surgeons and enhance patient care. Here are a few reasons why LLMs can be valuable in surgical practice:
- Knowledge retrieval and decision support: LLMs have access to vast amounts of medical literature and information. Surgeons can use LLMs to retrieve relevant research articles, guidelines, and clinical data to support decision-making during preoperative planning, intraoperative situations, and postoperative care. LLMs can provide up-to-date information on surgical techniques, complications, and treatment options, assisting surgeons in making well-informed decisions.
- Education and training: LLMs can be valuable educational tools for surgeons in training. They can provide access to a wide range of surgical knowledge, case studies, and procedural guidelines. Surgeons can interact with LLMs to ask questions, practice virtual simulations, and receive feedback, which can help enhance their surgical skills and knowledge.
- Natural language interfaces: LLMs can serve as natural language interfaces for surgical documentation and reporting. Surgeons can dictate operative notes, postoperative reports, and other clinical documentation, and LLMs can transcribe and format the information accurately. This can save time and effort for surgeons, allowing them to focus more on patient care.
- Clinical decision support systems: LLMs can be integrated into clinical decision support systems that provide real-time recommendations and alerts based on patient-specific data. By analyzing patient information, LLMs can assist in predicting surgical outcomes, identifying potential complications, and suggesting personalized treatment plans.
It is important to note that while LLMs can provide valuable support in surgical practice, they are not meant to replace the expertise and judgment of surgeons. They are tools that can augment and assist surgeons in their decision-making and knowledge acquisition process.
Additionally, the implementation of LLMs in surgical practice should consider factors such as data privacy and security, ethical considerations, and the need for validation and verification of the information provided by the models.
Overall, the use of LLMs in surgical practice has the potential to improve patient care, enhance surgical decision-making, and support the ongoing education and development of surgeons.
The GPT4 response to the same prompt:
Why and how can Large Language Models be used in surgical practice?
Large Language Models (LLMs) are artificial intelligence systems that can generate natural language texts based on a given input, such as a prompt, a query, or a context. LLMs can be used in surgical practice for various purposes, such as:
- Providing pre-operative information and instructions to patients and their families, such as the risks and benefits of the surgery, the preparation steps, and the recovery process.
- Generating operative reports and summaries based on the surgical data and images, such as the type and duration of the surgery, the instruments and materials used, the complications and outcomes, and the recommendations for follow-up care.
- Enhancing surgical education and training by creating realistic scenarios and cases for simulation and assessment, such as the anatomy and pathology of the patient, the surgical plan and technique, and the possible challenges and errors.
- Supporting surgical decision making and innovation by generating suggestions and alternatives based on the current evidence and best practices, such as the optimal surgical approach, the most suitable device or implant, and the potential improvements or modifications.
LLMs can be used in surgical practice by integrating them with other technologies and platforms, such as voice assistants, chatbots, electronic health records, surgical robots, and augmented reality devices. LLMs can also be customized and fine-tuned for specific surgical domains and tasks, such as orthopedic surgery, neurosurgery, or cardiac surgery.
LLMs have the potential to improve the quality and efficiency of surgical practice by providing accurate and timely information, reducing documentation workload, enhancing learning and skill development, and facilitating creativity and innovation. However, LLMs also pose some challenges and limitations, such as ensuring their reliability, validity, safety, ethics, and accountability. Therefore, LLMs should be used in surgical practice with caution and supervision, and in collaboration with human experts.