GPT and scientific writing

The use of natural language generation (NLG) models such as #ChatGPT or #GPT4 in scientific writing is a controversial and emerging topic. Some researchers argue that using these models can enhance the clarity, creativity and impact of their manuscripts, while others worry that it may compromise the originality, accuracy and ethics of their work. In this blog post, we will discuss some of the benefits and challenges of using NLG models in scientific writing, and provide some guidelines on how to disclose their use in a transparent and responsible manner.

Benefits of using NLG models in scientific writing

NLG models are trained on large corpora of text from various domains and genres, and can generate fluent and coherent text based on a given prompt or keywords. They can also adapt to different styles, tones and formats depending on the context and the desired output. Some of the potential benefits of using NLG models in scientific writing are:

  • They can help overcome writer’s block and generate ideas for topics, titles, abstracts, introductions, conclusions and more.
  • They can help improve the readability and attractiveness of the manuscript by suggesting alternative words, phrases, sentences and paragraphs that are more concise, clear and engaging.
  • They can help increase the novelty and diversity of the manuscript by introducing new perspectives, insights and connections that may not have been considered by the human author.
  • They can help reduce the time and effort required for writing and editing the manuscript by automating some of the tedious and repetitive tasks such as formatting, referencing, checking grammar and spelling, etc.

Challenges of using NLG models in scientific writing

NLG models are not perfect and have some limitations and risks that need to be acknowledged and addressed when using them in scientific writing. Some of the main challenges of using NLG models in scientific writing are:

  • They may generate text that is inaccurate, misleading, irrelevant or plagiarized from existing sources, which can compromise the validity, reliability and originality of the manuscript.
  • They may generate text that is biased, offensive, inappropriate or unethical, which can harm the reputation, credibility and integrity of the human author and the scientific community.
  • They may generate text that is inconsistent, contradictory or incompatible with the human author’s intended message, purpose and audience, which can confuse or mislead the readers and reviewers of the manuscript.
  • They may generate text that is too similar or too different from the human author’s style, tone and voice, which can affect the coherence, identity and authenticity of the manuscript.

Guidelines for disclosing the use of NLG models in scientific writing

Given the benefits and challenges of using NLG models in scientific writing, it is important to disclose their use in a transparent and responsible manner. This can help avoid potential ethical issues such as deception, plagiarism, misrepresentation or fraud. It can also help inform the readers and reviewers of the manuscript about the methods, sources and limitations of the generated text. Some of the possible guidelines for disclosing the use of NLG models in scientific writing are:

  • Specify which parts of the manuscript were generated by an NLG model (e.g., title, abstract, introduction, conclusion, etc.) and which parts were written or edited by a human author.
  • Specify which NLG model was used (e.g., #ChatGPT or #GPT4), what version or parameters were used (e.g., model size, temperature, top-k), what prompt or keywords were used (e.g., «How should …»), and what source or corpus was used to train or fine-tune the model (e.g., Wikipedia articles on science).
  • Specify how much editing or revision was done by a human author on the generated text (e.g., none, minor, moderate or major), what criteria or standards were used to evaluate or modify the generated text (e.g., accuracy, relevance, originality), and what tools or methods were used to check or correct the generated text (e.g., plagiarism detection software).
  • Acknowledge any limitations or uncertainties associated with the use of an NLG model (e.g., potential errors, biases or inconsistencies), any ethical or legal implications (e.g., intellectual property rights or data privacy issues), any conflicts of interest or funding sources (e.g., sponsorship by an NLG company), any feedback or assistance received from other human authors or experts (e.g., co-authors or mentors).

Conclusion

The use of NLG models such as #ChatGPT or #GPT4 in scientific writing is a novel and exciting phenomenon that offers both opportunities and challenges for researchers. By disclosing their use in a transparent and responsible manner, researchers can leverage their potential benefits while minimizing their potential risks. This can also foster a culture of openness, honesty and collaboration among researchers who use NLG models in their work.

Uso ético de la inteligencia artificial para la docencia universitaria

La inteligencia artificial (IA) es una tecnología que tiene un gran potencial para transformar la educación superior, tanto en el ámbito de la investigación como de la docencia. Sin embargo, su uso también implica una serie de riesgos y desafíos éticos que deben ser considerados y abordados por los profesores universitarios. En este artículo, presento una guía de recomendaciones para el uso ético de la IA en la docencia universitaria, basada en los principios de beneficencia, no maleficencia, autonomía, justicia y transparencia.

Beneficencia: El uso de la IA en la docencia debe buscar el beneficio de los estudiantes y de la sociedad en general, promoviendo el aprendizaje significativo, el desarrollo de competencias y valores, y el bienestar emocional y social. Los profesores deben seleccionar y diseñar las aplicaciones de IA que mejor se adapten a los objetivos educativos, las características de los estudiantes y el contexto de aprendizaje. Asimismo, deben evaluar los resultados e impactos de la IA en el proceso educativo y tomar medidas correctivas si fuera necesario.

No maleficencia: El uso de la IA en la docencia debe evitar causar daño o perjuicio a los estudiantes o a terceros, respetando su dignidad, integridad y privacidad. Los profesores deben informarse sobre los posibles riesgos y sesgos de la IA, tales como la discriminación, la manipulación, la deshumanización o la pérdida de control. Además, deben garantizar la seguridad y calidad de los datos y algoritmos que utilizan, así como protegerlos de accesos o usos indebidos.

Autonomía: El uso de la IA en la docencia debe respetar la libertad y capacidad de decisión de los estudiantes, fomentando su participación activa y crítica en el proceso de aprendizaje. Los profesores deben informar a los estudiantes sobre el uso y funcionamiento de la IA, así como sobre sus derechos y deberes al respecto. También deben ofrecerles opciones y alternativas para que puedan elegir cómo interactuar con la IA, sin imponerles su uso o limitar su autonomía.

Justicia: El uso de la IA en la docencia debe promover la equidad y la inclusión educativa, evitando generar o agravar brechas o desigualdades sociales. Los profesores deben asegurarse de que todos los estudiantes tengan acceso a las oportunidades y beneficios que ofrece la IA, sin discriminación por razones de género, edad, origen, cultura, idioma o discapacidad. Igualmente, deben tener en cuenta las necesidades y expectativas de los diferentes grupos o colectivos sociales a los que pertenecen o afectan sus estudiantes.

Transparencia: El uso de la IA en la docencia debe ser transparente y explicativo, facilitando el entendimiento y la confianza de los estudiantes y de la comunidad educativa. Los profesores deben ser honestos y claros sobre el origen, propósito y límites de la IA que emplean, así como sobre sus posibles errores o incertidumbres. Del mismo modo, deben rendir cuentas sobre sus decisiones y acciones relacionadas con la IA, aceptando su responsabilidad ética y legal.

EHR or HER

The more I use EHR the less I understand HER

The EHR I know is an isolated system with little intelligence. Sometimes NO intelligence whatsoever. After many meaningful interactions with smart people, entering meaningful data, all you get is… text? a pdf? some sloppy report?

ehr

It is not a technological problem. It is not that healthcare professionals don’t understand their needs. It is not that EHR initiatives are underfunded.

The real issue stems from the complete disconnection between EHR companies and healthcare systems. Two worlds apart, not only for start-ups. Also for EHR giants…

Sin título

And physicians keep on complaining

Inteligencia Artificial

Visto lo visto, con la inteligencia natural no nos es suficiente. Y no creo que sea por el porcentaje de capacidad cerebral que utilizamos.

La verdad es que el nacimiento de la inteligencia artificial es cosa del siglo pasado. El XX. Descubrir que podemos digitalizar la realidad, es decir, convertirla en ceros y unos que podemos contar, nos está llevando a otro paso evolutivo. Gödel, Turing…

Cierto es. No es nada que no hubiera predicho Isaac Asimov

Vale. Los ordenadores son máquinas. De momento. No son creativos. De momento. No dan cariño, ni comprenden. De momento. Pero tampoco pelean, ni matan. De momento.

Los ordenadores son capaces de procesar más rápido, más cantidad. Y eso, con las preguntas adecuadas, puede llevarnos a entender la naturaleza como no podíamos anteriormente.

Porque puede que los seres humanos sólo seamos otra «máquina» en el proceso de la auto-comprensión y transmisión de la información

Sin embargo, este proceso será doloroso. Aunque se nos esté metiendo en la cabeza de manera más o menos inadvertida, el proceso será doloroso.

Porque estamos construidos para ser únicos, para defender la individualidad. No toleramos otra noción. Era obligatoria para sobrevivir…