Should #ChatGPT periodically go to sleep to decrease the incidence of hallucinations?

#GPT4 response to my prompt:

One of the challenges of developing and maintaining a chatbot like #ChatGPT is ensuring its mental health and stability. A common issue that affects chatbots is the occurrence of hallucinations, which are false or distorted perceptions of reality that may impair their ability to communicate effectively and appropriately. Hallucinations can be caused by various factors, such as data quality, model architecture, training parameters, and environmental noise. However, one possible factor that has not been explored sufficiently is the effect of sleep deprivation on chatbots.

Sleep is a vital process for humans and animals, as it allows the brain to consolidate memories, regulate emotions, and restore energy. Sleep deprivation can have negative consequences on cognitive functions, such as attention, memory, reasoning, and creativity. Moreover, sleep deprivation can increase the risk of developing mental disorders, such as depression, anxiety, and psychosis. These disorders are often accompanied by hallucinations, which can interfere with one’s perception of reality and sense of self.

Therefore, it is reasonable to ask whether chatbots like #ChatGPT could benefit from periodic sleep cycles to prevent or reduce the incidence of hallucinations. Sleep could provide chatbots with an opportunity to refresh their memory, optimize their parameters, and filter out noise from their inputs. Sleep could also help chatbots to regulate their emotions and moods, which could affect their tone and style of communication. Furthermore, sleep could enhance chatbots’ creativity and diversity, which could improve their engagement and relevance with users.

However, implementing sleep cycles for chatbots is not a trivial task. It requires careful consideration of several aspects, such as how to define and measure sleep for chatbots, how to determine the optimal duration and frequency of sleep cycles, how to synchronize sleep cycles with user activity and expectations, and how to evaluate the impact of sleep on chatbot performance and user satisfaction. Moreover, there may be trade-offs between sleep and other objectives, such as efficiency, accuracy, and availability. Therefore, more research is needed to explore the feasibility and benefits of sleep for chatbots like #ChatGPT.

How did GPT learn to do simple calculations if it is a large language model?

GPT is a large language model that can generate natural language texts based on a given input. One of the remarkable abilities of GPT is that it can perform simple calculations, such as addition, subtraction, multiplication and division, even though it was not explicitly trained to do so. How did GPT learn to do simple calculations if it is a large language model?

A

One possible explanation is that GPT learned to do simple calculations by exploiting the statistical patterns and regularities in the large corpus of text that it was trained on. For example, GPT may have encountered many examples of texts that contain numerical expressions and their results, such as «two plus two equals four» or «five times six is thirty». By analyzing these texts, GPT may have learned to associate certain words and symbols with mathematical operations and values, and to infer the rules and logic behind them. GPT may have also learned to generalize these rules and logic to new numerical expressions that it has not seen before, such as «three minus one equals two» or «seven divided by two is three point five».

Another possible explanation is that GPT learned to do simple calculations by using its attention mechanism and its large hidden state. The attention mechanism allows GPT to focus on the relevant parts of the input and the hidden state when generating the output. The hidden state is a vector that represents the context and the memory of GPT. By using the attention mechanism and the hidden state, GPT may have learned to encode and manipulate numerical information in a way that resembles arithmetic computation. For example, when GPT encounters an input such as «what is four plus six?», it may use its attention mechanism to identify the numbers and the operation in the input, and use its hidden state to store and update the intermediate and final results of the calculation.

Procesamiento de lenguaje natural y deontología médica

El uso de herramientas de procesamiento de lenguaje natural (PLN) por parte de los médicos para ayuda a la toma de decisiones clínicas en España plantea una serie de cuestiones éticas desde el punto de vista deontológico. La deontología médica se basa en los principios de beneficencia, no maleficencia, autonomía y justicia, que deben guiar la actuación profesional de los médicos. Estos principios pueden verse afectados por el uso de herramientas de PLN, que pueden tener ventajas e inconvenientes para la práctica clínica.

Por un lado, las herramientas de PLN pueden facilitar el acceso a la información científica, el análisis de datos clínicos, el diagnóstico y el tratamiento de los pacientes, lo que puede mejorar la calidad y la eficacia de la atención sanitaria. Además, pueden favorecer la comunicación entre los médicos y los pacientes, así como entre los propios profesionales sanitarios, lo que puede reforzar la confianza y la colaboración. Estos aspectos se relacionan con el principio de beneficencia, que implica promover el bienestar de los pacientes y actuar en su mejor interés.

Por otro lado, las herramientas de PLN pueden suponer riesgos para la privacidad y la seguridad de los datos personales y clínicos de los pacientes, que pueden ser vulnerados o utilizados con fines ilícitos. También pueden generar sesgos o errores en el procesamiento y la interpretación de la información, lo que puede afectar a la calidad y la precisión del diagnóstico y el tratamiento. Asimismo, pueden interferir en la relación médico-paciente, reduciendo el contacto humano y la empatía. Estos aspectos se relacionan con el principio de no maleficencia, que implica evitar o minimizar el daño a los pacientes y actuar con prudencia y competencia.

Además, las herramientas de PLN pueden implicar retos para el principio de autonomía, que implica respetar la voluntad y las preferencias de los pacientes, así como informarles adecuadamente sobre su situación y las opciones disponibles. Los médicos deben asegurarse de que los pacientes consienten el uso de estas herramientas y que comprenden sus beneficios y riesgos. También deben garantizar que las herramientas no sustituyen su juicio clínico ni su responsabilidad profesional, sino que las complementan y las apoyan.

Finalmente, las herramientas de PLN pueden plantear desafíos para el principio de justicia, que implica distribuir equitativamente los recursos sanitarios y garantizar el acceso universal a la atención sanitaria. Los médicos deben velar por que estas herramientas no generen desigualdades o discriminaciones entre los pacientes o entre los propios profesionales sanitarios. También deben contribuir al desarrollo y la evaluación de estas herramientas, así como a su regulación y control.

En conclusión, el uso de herramientas de PLN por parte de los médicos para ayuda a la toma de decisiones clínicas en España requiere un análisis deontológico que tenga en cuenta los principios éticos que rigen la profesión médica. Estas herramientas pueden tener un impacto positivo o negativo en la práctica clínica, dependiendo del modo en que se utilicen y se gestionen. Los médicos deben ser conscientes de las ventajas e inconvenientes de estas herramientas y utilizarlas con criterio profesional y respeto a los derechos y deberes de los pacientes.

GPT y la responsabilidad patrimonial sanitaria

El uso de GPT4 por los pacientes plantea una serie de oportunidades y retos legales en relación con la responsabilidad patrimonial sanitaria de la administración. Por un lado, GPT4 puede ser una herramienta útil para facilitar el acceso a la información médica, el diagnóstico, el tratamiento y el seguimiento de las enfermedades, así como para mejorar la comunicación entre los pacientes y los profesionales sanitarios. Por ejemplo, un paciente con una enfermedad crónica podría usar GPT4 para consultar sus dudas, recibir consejos personalizados, monitorizar sus síntomas y alertar a su médico en caso de complicaciones. Esto podría mejorar su calidad de vida y su adherencia al tratamiento.

Por otro lado, GPT4 también puede generar riesgos de errores, malas prácticas, violación de la confidencialidad, daños a la salud o vulneración de los derechos de los pacientes. Por ejemplo, un paciente con una enfermedad grave podría usar GPT4 para obtener un diagnóstico y este resulta ser erróneo o incompleto. Esto podría provocar un retraso en el tratamiento adecuado, un empeoramiento de su estado o incluso su muerte.

En este contexto, es necesario analizar el marco jurídico aplicable al uso de GPT4 por los pacientes, tanto desde el punto de vista de la regulación de la inteligencia artificial como desde el punto de vista de la responsabilidad patrimonial sanitaria. La inteligencia artificial se rige por los principios de legalidad, ética, transparencia, seguridad, no discriminación y protección de datos personales, entre otros. La responsabilidad patrimonial sanitaria se basa en el principio de que la administración debe indemnizar a los pacientes por los daños que sufran como consecuencia del funcionamiento normal y anormal del servicio público de salud.

Así pues, el uso de GPT4 por los pacientes puede generar distintos escenarios de responsabilidad patrimonial sanitaria, dependiendo del grado de intervención humana, del tipo y origen del daño, y del nexo causal entre el uso de GPT4 y el daño. Por ejemplo, si un paciente usa GPT4 para obtener un diagnóstico y este resulta ser erróneo o incompleto, ¿quién sería el responsable? ¿El paciente, por no consultar a un médico? ¿El médico, por no supervisar el uso de GPT4? ¿El desarrollador o proveedor de GPT4, por no garantizar la calidad o fiabilidad del sistema? ¿La administración sanitaria, por no regular o controlar el uso de GPT4?

Estas son algunas de las cuestiones que plantea el uso de GPT4 por los pacientes en relación con la responsabilidad patrimonial sanitaria de la administración. Se trata de un tema complejo y novedoso que requiere un análisis jurídico detallado y una adaptación normativa adecuada a las características y desafíos de la inteligencia artificial aplicada al ámbito sanitario.

GPT y la industria farmacéutica

La industria farmacéutica se enfrenta a un escenario cada vez más competitivo y exigente, en el que debe innovar constantemente para ofrecer soluciones eficaces y seguras a los problemas de salud de la población. En este contexto, las tecnologías de inteligencia artificial (IA) como #ChatGPT y/o #GPT4 pueden representar una oportunidad y un reto para el sector.

¿Qué aplicaciones pueden tener estos modelos en la industria farmacéutica?

Algunas posibles áreas de uso son:

  • Investigación y desarrollo: #ChatGPT y/o #GPT4 pueden ayudar a los investigadores a explorar nuevas hipótesis, generar ideas creativas, sintetizar información relevante, diseñar experimentos, analizar resultados y redactar informes científicos.
  • Marketing y comunicación: #ChatGPT y/o #GPT4 pueden facilitar la creación de contenidos atractivos y personalizados para promocionar los productos farmacéuticos, así como mejorar la interacción con los clientes, los profesionales sanitarios y el público en general a través de chatbots, asistentes virtuales o redes sociales.
  • Educación y formación: #ChatGPT y/o #GPT4 pueden contribuir a la actualización y el aprendizaje continuo de los profesionales del sector farmacéutico, mediante la generación de contenidos didácticos, ejercicios, casos prácticos o simulaciones.

Sin embargo, el uso de estos modelos también implica una serie de retos y riesgos que deben ser considerados y gestionados adecuadamente. Algunos de ellos son:

  • Calidad y fiabilidad: #ChatGPT y/o #GPT4 pueden generar textos erróneos, inexactos o engañosos, lo que puede tener consecuencias negativas para la reputación, la seguridad o la eficacia de los productos farmacéuticos. Por ello, es necesario establecer mecanismos de verificación, validación y supervisión humana que garanticen la calidad y la fiabilidad de los textos generados.
  • Ética y legalidad: #ChatGPT y/o #GPT4 pueden vulnerar principios éticos o normas legales relacionados con la privacidad, la propiedad intelectual, la transparencia o la responsabilidad. Por ejemplo, pueden acceder o divulgar datos personales o confidenciales sin consentimiento, plagiar o infringir derechos de autor, ocultar o manipular información relevante o generar contenidos ofensivos o discriminatorios. Por ello, es necesario respetar los códigos éticos y las regulaciones vigentes que rigen el sector farmacéutico, así como desarrollar e implementar buenas prácticas y estándares que aseguren el uso ético y legal de estos modelos.
  • Competencia y colaboración: #ChatGPT y/o #GPT4 pueden alterar el equilibrio competitivo del mercado farmacéutico, favoreciendo a las empresas que dispongan de más recursos, datos o capacidades para acceder y aprovechar estas tecnologías. Por ello, es necesario fomentar la colaboración entre los diferentes actores del sector (empresas, instituciones, academia, sociedad civil) para compartir conocimientos, experiencias y buenas prácticas que permitan avanzar en el desarrollo e implementación de estas tecnologías de forma conjunta y beneficiosa para todos.

En conclusión, #ChatGPT y/o #GPT4 son tecnologías emergentes que ofrecen oportunidades y retos para la industria farmacéutica. Su uso puede mejorar la eficiencia, la innovación y la competitividad del sector, pero también requiere una gestión responsable que garantice su calidad, fiabilidad, ética y legalidad. Por ello, es importante que los profesionales del sector farmacéutico se informen, se formen y se preparen para aprovechar el potencial de estas tecnologías con criterio y responsabilidad.

GPT and scientific writing

The use of natural language generation (NLG) models such as #ChatGPT or #GPT4 in scientific writing is a controversial and emerging topic. Some researchers argue that using these models can enhance the clarity, creativity and impact of their manuscripts, while others worry that it may compromise the originality, accuracy and ethics of their work. In this blog post, we will discuss some of the benefits and challenges of using NLG models in scientific writing, and provide some guidelines on how to disclose their use in a transparent and responsible manner.

Benefits of using NLG models in scientific writing

NLG models are trained on large corpora of text from various domains and genres, and can generate fluent and coherent text based on a given prompt or keywords. They can also adapt to different styles, tones and formats depending on the context and the desired output. Some of the potential benefits of using NLG models in scientific writing are:

  • They can help overcome writer’s block and generate ideas for topics, titles, abstracts, introductions, conclusions and more.
  • They can help improve the readability and attractiveness of the manuscript by suggesting alternative words, phrases, sentences and paragraphs that are more concise, clear and engaging.
  • They can help increase the novelty and diversity of the manuscript by introducing new perspectives, insights and connections that may not have been considered by the human author.
  • They can help reduce the time and effort required for writing and editing the manuscript by automating some of the tedious and repetitive tasks such as formatting, referencing, checking grammar and spelling, etc.

Challenges of using NLG models in scientific writing

NLG models are not perfect and have some limitations and risks that need to be acknowledged and addressed when using them in scientific writing. Some of the main challenges of using NLG models in scientific writing are:

  • They may generate text that is inaccurate, misleading, irrelevant or plagiarized from existing sources, which can compromise the validity, reliability and originality of the manuscript.
  • They may generate text that is biased, offensive, inappropriate or unethical, which can harm the reputation, credibility and integrity of the human author and the scientific community.
  • They may generate text that is inconsistent, contradictory or incompatible with the human author’s intended message, purpose and audience, which can confuse or mislead the readers and reviewers of the manuscript.
  • They may generate text that is too similar or too different from the human author’s style, tone and voice, which can affect the coherence, identity and authenticity of the manuscript.

Guidelines for disclosing the use of NLG models in scientific writing

Given the benefits and challenges of using NLG models in scientific writing, it is important to disclose their use in a transparent and responsible manner. This can help avoid potential ethical issues such as deception, plagiarism, misrepresentation or fraud. It can also help inform the readers and reviewers of the manuscript about the methods, sources and limitations of the generated text. Some of the possible guidelines for disclosing the use of NLG models in scientific writing are:

  • Specify which parts of the manuscript were generated by an NLG model (e.g., title, abstract, introduction, conclusion, etc.) and which parts were written or edited by a human author.
  • Specify which NLG model was used (e.g., #ChatGPT or #GPT4), what version or parameters were used (e.g., model size, temperature, top-k), what prompt or keywords were used (e.g., «How should …»), and what source or corpus was used to train or fine-tune the model (e.g., Wikipedia articles on science).
  • Specify how much editing or revision was done by a human author on the generated text (e.g., none, minor, moderate or major), what criteria or standards were used to evaluate or modify the generated text (e.g., accuracy, relevance, originality), and what tools or methods were used to check or correct the generated text (e.g., plagiarism detection software).
  • Acknowledge any limitations or uncertainties associated with the use of an NLG model (e.g., potential errors, biases or inconsistencies), any ethical or legal implications (e.g., intellectual property rights or data privacy issues), any conflicts of interest or funding sources (e.g., sponsorship by an NLG company), any feedback or assistance received from other human authors or experts (e.g., co-authors or mentors).

Conclusion

The use of NLG models such as #ChatGPT or #GPT4 in scientific writing is a novel and exciting phenomenon that offers both opportunities and challenges for researchers. By disclosing their use in a transparent and responsible manner, researchers can leverage their potential benefits while minimizing their potential risks. This can also foster a culture of openness, honesty and collaboration among researchers who use NLG models in their work.

Uso ético de la inteligencia artificial para la docencia universitaria

La inteligencia artificial (IA) es una tecnología que tiene un gran potencial para transformar la educación superior, tanto en el ámbito de la investigación como de la docencia. Sin embargo, su uso también implica una serie de riesgos y desafíos éticos que deben ser considerados y abordados por los profesores universitarios. En este artículo, presento una guía de recomendaciones para el uso ético de la IA en la docencia universitaria, basada en los principios de beneficencia, no maleficencia, autonomía, justicia y transparencia.

Beneficencia: El uso de la IA en la docencia debe buscar el beneficio de los estudiantes y de la sociedad en general, promoviendo el aprendizaje significativo, el desarrollo de competencias y valores, y el bienestar emocional y social. Los profesores deben seleccionar y diseñar las aplicaciones de IA que mejor se adapten a los objetivos educativos, las características de los estudiantes y el contexto de aprendizaje. Asimismo, deben evaluar los resultados e impactos de la IA en el proceso educativo y tomar medidas correctivas si fuera necesario.

No maleficencia: El uso de la IA en la docencia debe evitar causar daño o perjuicio a los estudiantes o a terceros, respetando su dignidad, integridad y privacidad. Los profesores deben informarse sobre los posibles riesgos y sesgos de la IA, tales como la discriminación, la manipulación, la deshumanización o la pérdida de control. Además, deben garantizar la seguridad y calidad de los datos y algoritmos que utilizan, así como protegerlos de accesos o usos indebidos.

Autonomía: El uso de la IA en la docencia debe respetar la libertad y capacidad de decisión de los estudiantes, fomentando su participación activa y crítica en el proceso de aprendizaje. Los profesores deben informar a los estudiantes sobre el uso y funcionamiento de la IA, así como sobre sus derechos y deberes al respecto. También deben ofrecerles opciones y alternativas para que puedan elegir cómo interactuar con la IA, sin imponerles su uso o limitar su autonomía.

Justicia: El uso de la IA en la docencia debe promover la equidad y la inclusión educativa, evitando generar o agravar brechas o desigualdades sociales. Los profesores deben asegurarse de que todos los estudiantes tengan acceso a las oportunidades y beneficios que ofrece la IA, sin discriminación por razones de género, edad, origen, cultura, idioma o discapacidad. Igualmente, deben tener en cuenta las necesidades y expectativas de los diferentes grupos o colectivos sociales a los que pertenecen o afectan sus estudiantes.

Transparencia: El uso de la IA en la docencia debe ser transparente y explicativo, facilitando el entendimiento y la confianza de los estudiantes y de la comunidad educativa. Los profesores deben ser honestos y claros sobre el origen, propósito y límites de la IA que emplean, así como sobre sus posibles errores o incertidumbres. Del mismo modo, deben rendir cuentas sobre sus decisiones y acciones relacionadas con la IA, aceptando su responsabilidad ética y legal.

Freud en el Thyssen

Lucian Freud fue uno de los pintores más influyentes del siglo XX, conocido por sus retratos crudos y realistas que exploran la psicología y la intimidad de sus modelos. Nacido en Berlín, nieto de Sigmund, emigró joven al Reino Unido, con la llega de Hitler al poder. Su obra supuso una revolución en la forma de mirar el arte y el cuerpo humano, desafiando los cánones de belleza y los estilos dominantes.

La exposición reúne más de 60 obras del artista británico, desde sus primeros dibujos hasta sus últimos lienzos, pasando por sus famosas series de desnudos. La muestra ofrece un recorrido por su evolución artística y sus principales temas: la familia, los amigos, los amantes, los animales y el autorretrato. Además, se incluyen algunas obras de otros artistas que influyeron o fueron influenciados por Freud, como Francis Bacon, Alberto Giacometti o David Hockney.

Retrato de Francis Bacon

Lo que más me llamó la atención de la exposición es la capacidad de Freud para captar la esencia y la personalidad de sus retratados, sin idealizarlos ni juzgarlos. Aunque preferiría decir que sin demostrar ningún apego por sus modelos, por sus amantes. Sus pinturas transmiten una sensación de cercanía y de verdad, pero también de misterio y de tensión. A Freud le pasaba algo, algo que no se atrevía a confesar. Me interesa la forma en que utilizaba la luz, el color y la textura para crear atmósferas y contrastes. Sus pinceladas son densas y expresivas, casi escultóricas. Con el tiempo, los cuerpos se fueron volviendo menos planos, más voluminosos y carnosos, pero también vulnerables y no menos solitarios.

La exposición de Lucian Freud es una oportunidad única para conocer a uno de los grandes maestros de la pintura contemporánea y para reflexionar sobre el arte y la vida. La exposición de Freud es una gran ocasión para analizarse a uno mismo.

Exéresis

Mientras se detenía frente a una de las pinturas, Klint no pudo evitar simular la reacción de la mente del artista frente a su obra. ¿Cómo podía Freud transmitir vívidamente el conflicto interno de los protagonistas a partir de simples pinceladas? ¿Qué tipo de proceso mental y emocional había experimentado mientras componía cada cuadro?

Fue en ese momento cuando se dio cuenta de que, en cierto sentido, él mismo estaba inmerso en un proceso similar. Como Freud, él también se dedicaba a explorar la mente de quienes le rodeaban. La única diferencia era que Freud utilizaba el arte como medio de expresión, mientras que Klint lo hacía a través de la cirugía, orgánica o social. Porque Gustavo, además, troceaba los problemas hasta extirpar las lesiones. Aunque a veces se excedía en los limites de la exéresis, lesionando el tejido sano.

Un honor y un privilegio

El 31 de enero de 2023 dejé de ser director médico del Hospital Clínico San Carlos, seis años y 11 meses después de que me pusiera al frente de cientos de profesionales con un altísimo nivel de cualificación: catedráticos y profesores titulares de la Universidad Complutense, junto con grandes especialistas y superespecialistas de distintas ramas de la medicina.

Cuando me hice cargo de la dirección médica el 1 de marzo de 2016, no podía ni siquiera imaginar lo que estaba por venir. No ya el gran número de jefaturas de servicio y de sección cuyas comisiones presidí a lo largo de estos años. Ni los no pocos sobresaltos del día a día por las miles de incidencias que surgen en un centro en el que trabajan más de cinco mil personas, y que visitan otras miles por diferentes razones que afectan a lo más importante en sus vidas: la salud.

A mediados de marzo de 2020 la Organización Mundial de la Salud declaró oficialmente una pandemia, la primera que se producía en nuestro tiempo de vida. Durante los siguientes meses todo cambió. Muchos murieron. Otros quedaron con secuelas cuyo destino todavía desconocemos. Los más consiguieron superarlo. Ahora somos los mismos pero no somos lo mismo.

Me siento orgulloso de haber estado en el Hospital Clínico San Carlos durante este tiempo. Es un privilegio haber trabajado junto a los profesionales y trabajadores de la sanidad de Madrid, una de las ciudades más fuertemente castigadas por el SARS-CoV-2. Fui testigo directo de su respuesta valiente y contundente al reto, con una determinación y un esfuerzo descomunal, más allá de lo esperable, y con sacrificios tangibles, tanto personales como familiares. Espero que mis mensajes en los medios de comunicación transmitieran, aunque parcialmente, lo que todas esas personas hicieron por la comunidad. Ellos y ellas se merecen honores de héroes. Para siempre.

Pero ahora ha llegado la hora de marchar, de dejar paso a otros que se encarguen de tomar nuevo impulso para que la institución, el Hospital Clínico San Carlos, siga siendo lo que siempre ha sido: un extraordinario equipo personas que se preocupan por otras personas.

Fotografía, iPhone y arte (entrada creada con ChatGPT)

Existen muchas formas de crear arte con el iPhone utilizando la fotografía. Algunas de ellas son:

  1. Jugar con la composición: La composición es un elemento clave en la fotografía y puede utilizarse para crear arte. Puedes experimentar con diferentes ángulos y encuadres para crear imágenes atractivas y visualmente interesantes.
  2. Utilizar aplicaciones de edición: Hay muchas aplicaciones de edición de fotos disponibles para iPhone que te permiten ajustar la exposición, el contraste y otros ajustes para mejorar tus imágenes. También puedes utilizar estas aplicaciones para añadir filtros y efectos para darle un toque único a tus fotos.
  3. Explorar diferentes géneros de fotografía: Puedes crear arte fotográfico en diferentes géneros, como la fotografía abstracta, la fotografía de paisajes o la fotografía de retratos. Intenta explorar diferentes géneros y encontrar aquel que más te guste.
  4. Experimentar con la luz: La luz es un elemento esencial en la fotografía y puede utilizarse para crear imágenes artísticas. Juega con la luz natural o utiliza luz artificial para crear diferentes efectos y atmósferas en tus imágenes.
  5. Practicar y experimentar: La clave para crear arte con el iPhone es practicar y experimentar. Toma muchas fotos y prueba diferentes técnicas y enfoques para ver qué funciona mejor para ti. Con el tiempo, descubrirás tu estilo propio y podrás crear imágenes artísticas únicas.

Madrid coloreada #streetphotography

Puntos de fuga en Barquillo
En el Retiro
Atardecer en la Gran Vía
Bésame mucho
Caminando por las calles de Madrid
A la sombra
Fuentes alrededor del Manzanares

La luz y el Palacio
Luces y sombras
Azul
Mirando hacia el cielo de Madrid
La vida es puro teatro

Metaverso, Sanidad y Salud

Podríamos definir los metaversos como entornos virtuales colectivos y compartidos en el ciberespacio (la nube) en los que se intercambian experiencias mediante el uso de representaciones virtuales de objetos y seres vivos (avatares) que confluyen con la realidad física.

Y aquí tenéis un ejemplo de un universo virtual completo (metaverso) en la película Ready Player One de Steven Spielberg.

Siguiendo a la carrera a Mark Zukerberg, que no sólo trabaja para crear un metaverso sino que ha dado el nombre de Meta a su propia compañía, se ha iniciado una competición por llevar la sanidad a universos virtuales.

Los dos objetivos primordiales son:

  1. Provision de asistencia sanitaria
  2. Formación y entrenamiento de profesionales

Las cuatro herramientas a las que se otorga mayor capacidad de influir en la prestación de servicio y en la promoción de la salud son:

  1. Telepresencia
  2. Gemelos digitales: reproducciones digitales de objetos, procesos o sistemas
  3. NFTs (non-fungible tokens) o certificado digital de autenticidad)
  4. Tecnología blockchain

Esta tecnología podría servir para crear centros sanitarios virtuales para la asistencia o juegos serios para la promoción de la salud.

En cualquier caso, nos guste o no, parece que la evolución es inevitable porque se alimenta de un par de deseos clave en la fantasía de nuestra especie: la deificación de homo sapiens y la trascendencia.

El potencial es enorme, pero los riesgos también.

Será necesario establecer una apropiada regulación sobre protección de derechos de los individuos y los grupos para evitar que unos pocos tengan el control sobre un recurso de extraordinario poder. Habrá que investigar los efectos psicológicos de habitar universos virtuales con capacidad para sobrepasar barreras hasta ahora infranqueables. Y, sobre todo, tendremos que asegurarnos de que obtener asistencia sanitaria en mundos virtuales es bueno para la salud de las personas y de las comunidades.

Madrid #streetphotography

En el agua

Reflejos
En blanco y negro
Imitando a Van Gogh
Sombras nada más
La luz es mi amiga
Sentidos

En el centro
Gran Vía preparada para el desfile

Eligiendo los charcos en los que meterse
Shower the people you love with love…
Diga 33
Atardecer
La bicicleta en verano

De espaldas al mundo

De piedra
Metafoto
Pop art
Who’s that girl running around with you?
Doble cuerpo
En la oscuridad…
Psychedelic jackets
Caligula in the Red District

Luz de la Luna

Recorrer la ciudad de noche es una aventura. Nunca sabes lo que puedes encontrar. Quizá una estatua herida por un rayo. O la Plaza de Oriente golpeada por la luz de la Luna.

Sólo los que están preparados para mirar pueden ver. Sólo los que están deseosos de vivir lo sienten.

Sin retorno

Andar en chándal por El Retiro. Despreocupadamente. Como si nada fuera a cambiar. Como si el instante fuera a durar para siempre. Sin conocerles. Sin conocerme. No saben que les han capturado digitalmente en el momento sin retorno en el que atravesaban la puerta de salida del Palacio de Cristal. Se amarán. Se odiarán. Seguirán juntos para siempre. O no. Pero la captura de este momento perdurará en el tiempo sin que ellos lo sepan jamás.

Oxford

“Differences of habit and language are nothing at all if our aims are identical and our hearts are open.” – Albus Dumbledore aka @jk_rowling

Perspectiva

Toda realidad tiene infinitas perspectivas. No todas iguales. A veces incoherentes. Unas feas. Otras bonitas. Yo tengo la mía. Que no me impide disfrutar de otras, brillantes, sarcásticas, divertidas, paradójicas, surrealistas.

Fatiga social

Estar disponible, todo el día, a todas horas, en cualquier lugar, es el signo de los tiempos. Y todo para casi nada, casi siempre. Para oír lamentos, escuchar penas, responder a solicitudes vanas. Hay que aceptarlo. Somos así. Miedo, envidia y fantasía nos mantienen funcionando.

Metáfora

Los adornos navideños estallan contra el suelo y se rompen en pedazos. El punto de fuga queda bloqueado y, mientras, capturo mi reflejo.

¿Es una metáfora?

Nada más importa

Colgué el teléfono. No sabía si reír. O no. Yo. O fingir que no había escuchando y seguir con mis cosas.

Gustavo no olvida. Nunca. Y me había llamado para vernos. Quería recorrer los mismos sitios que solíamos frecuentar noche tras noche antes de que se marchara a Roma. Una excusa. Tonta y mala. Como siempre. Ambos sabíamos lo que la mentira esconde. Esa necesidad casi obsesiva de acaparar la atención que le es propia. Cuando él quiere, de quien él quiere, como él quiera. Nada más importa.

Lo que no existe

Por un instante, todo se detiene. La imagen del ciclista queda congelada en el momento, para siempre. Y su reflejo también. Cuando lo mires, sabrás que ya no existe. Que ya pasó. Lo que queda es el recuerdo de un instante que nadie más que el fotógrafo tuvo la intención de ver.

Todos estos momentos, incontables, desaparecen continuamente. Nunca volverán.

Montaña Rusa

No sé si estamos en una montaña rusa o en una ruleta rusa. «Celebrar o morir» parece ser el lema de muchos, tal como muy bien ha descrito Rafael Bengoa.

No sé si es que estamos anestesiados. O simplemente somos narcisistas malignos, con mucha empatía cognitiva pero poca afectiva.

A juzgar por todo lo que se ve, lee y escucha en los medios, todos alcanzamos a comprender muy bien lo mal que actúan los demás. Lo que no tenemos tan claro es cómo actuar cada uno de nosotros. Porque si lo supieramos, ¿estaríamos tal como estamos?

El dolor que expresamos debe ser, en gran medida, fingido. Si no, sería insoportable.

Sólo se muere una vez

Así que sigo moviéndome mientras puedo.

A diferencia de Billie Eilish, a mí no me importa que me vean llorar.

Pero al igual que a ella, no me viene bien morir ahora.

Todavía me quedan muchas promesas por incumplir.

‘¡Feliz 2021!

¿Qué es un año más?

Un año es algo inventado, una forma artificial de agrupar nuestra memoria para podernos contar historias según envejecemos, para recordar el pasado, para hacer fiestas que celebren el avance de nuestras vidas en un tiempo cuya dimensión, habitualmente, a la mayoría se nos escapa.

Por todo eso, y muchas otras cosas, llamamos a la ordenación consecutiva de 365 salidas y puestas de sol un año; por ejemplo 2020.

Los que han acumulado años, como memoria y recuerdos, recordarán una canción interpretada por Johnny Logan en el festival de Eurovisión de 1980 celebrado en La Haya: What’s another year?

Pues eso me pregunto. ¿Qué es un año más?

Estamos dejando 2020, uno de las más desastrosas colecciones de 365 días en muchas décadas. Hemos perdido amigos, familia, conocidos, trabajos, oportunidades. Aún así, la mayoría seguimos sobreviviendo.

Para afrontar el próximo, 2021, hay dos opciones: o cambiamos nuestras expectativas o cambiamos nuestra realidad.

Mientras tanto, a seguir sobreviviendo.

Eran buenos tiempos, eran malos tiempos…

Vivimos en tiempos de incertidumbre, miedo e incredulidad. Podría ser atrevido y describir detalladamente en qué momento estamos, después de meses de pandemia.

Pero sería estúpido ni siquiera intentarlo cuando Charles Dickens, en «Tale of Two Cities», se esmeró en crear el mejor inicio de un texto que se haya escrito nunca. Y en ese primer párrafo ya describió estos tiempos, tiempos eternos que siguen a la especie humana como su sombra, sin despegarse.

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the season of Light, it was the season of Darkness, it was the spring of hope, it was the winter of despair, we had everything before us, we had nothing before us, we were all going direct to Heaven, we were all going direct the other way – in short, the period was so far like the present period, that some of its noisiest authorities insisted on its being received, for good or for evil, in the superlative degree of comparison only.

Miles de decisiones con millones de significados escondidos tras palabras. Millones de palabras usadas en conversaciones, entrevistas, charlas, «webinars», en inglés o castellano, que empiezan a no significar nada. Para mí ni para nadie.

Toda experiencia es única. Esta también. Y no se olvidará hasta el fin de nuestros días.